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Abstract 

3D-QSAR (Quantitative Structure Activity Relationship) models can be built in Forge1, Cresset’s powerful 

ligand-focused workbench for understanding SAR and design. These models can be created for any 

available dataset, consisting of a significant number of compounds, which are believed to share a 

common binding mode and with a reasonable range of binding strength or activity. 3D-QSAR models can 

explain the currently observed SAR and aid in the design of new molecules where this is called for. In 

this case study, a data set of 73 dipeptidyl peptidase IV (DPP-4, a serine protease) inhibitors were used 

to develop a robust 3D-QSAR model within Forge. Ad hoc Forge 3D display capabilities were used to 

visualize and interpret the model.

Introduction 

Many 3D-QSAR methods determine descriptors 

by calculating molecular properties at the 

intersection points of a 3D lattice or grid, which 

covers the entire volume of the aligned 

molecules. This is necessary because these 

methods have no way of knowing which region 

of space around the molecules is likely to be 

relevant to molecular recognition.  

However, Cresset's field point description of 

molecules provides information about the 

regions of space around a molecule relevant to 

molecular recognition. As summarized in Figure 

1, the 3D-QSAR method within Forge uses 

probe positions that are determined directly 

from the field points of the aligned molecules 

training set. These positions are used to sample 

the electrostatic potential or the volume taken 

up by molecules. The advantage of this method 

Figure 1. Forge probe location process. 
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over lattice based methods is that far fewer 

sample positions are used. Additionally the 

sample values do not change when the 

molecules are rotated in cartesian space.  

The sample values are combined using Partial 

Least Squares (PLS) to derive an equation that 

describes activity. This 3D-QSAR model can help 

to explain SAR data and, with the best models, 

used to predict an activity value for newly 

designed molecules. 

However, getting a good 3D-QSAR is 

challenging. This is due to the requirements of 

getting good, and consistent, biological data 

and then generating the correct alignments for 

all compounds with the lowest degree of noise. 

Visual inspection of alignments is 

recommended. This ensures that there are no 

anomalies present and enables Forge to use the 

best possible alignment in the model building. 

Where the calculated alignment is sub-optimal 

manual intervention can be used to improve 

them. However, caution must be exercised not 

to manually create a model of activity that is 

dependent on the alignment (e.g. all the actives 

access a different space to all the inactives).  

In this case study, the published structures of 73 

inhibitors of DPP-4, and related biological 

activity data (in vitro inhibition of DPP-4), were 

used as a training set for 3D-QSAR model. 

Inhibitors of DPP-4 are a class of oral 

hypoglycemics that can be used to treat 

diabetes mellitus type 2. Sitagliptin (Table 1), a 

potent, selective, and orally active DPP-4 

inhibitor, was approved by the U.S. FDA in 2006.  

An extensive chemical exploration of the phenyl 

ring (left), and of the heterocyclic ring (right), 

have recently been reported in the literature2,5.  

The absolute stereochemistry of Sitagliptine2, 

and compounds 46b, 29b, as determined 

experimentally by X-ray crystal structure3,4, is 

shown in Table 1.  

For analogues of compounds 46b and 29b the 

stereochemistry of the most potent 

diastereoisomer (where not experimentally 

determined) was also assumed to be [R, R]. 

Only the most potent diastereoisomer of each 

compound (corresponding to the bioactive 

conformation) was included in this study. 

 

Table 1. Absolute stereochemistry of 
Sitagliptin2 and compounds 46b3, 29b4. 

R

Sitagliptin2 

R

R

Compound 46b3 

R

R

Compound 29b4 
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Conformation hunt and alignment of 

compounds 

Compound 46b (pIC50 = 9.74, the most potent 

in the training set) was used as the reference 

compound to align the training set.  

The conformation of the scaffold of 46b was 

derived from the X-ray conformation of 

Sitagliptin bound to DPP-4 (PDB 1X70). The 

orientation of the –CH2(4-fluorophenyl) group 

was adjusted according to published data3 . 

The other compounds in the training set were 

aligned to compound 46b by Maximum 

Common Substructure using a customized 

‘accurate but slow’ set-up for the conformation 

hunt: 

 Max number of conformations: 500 

 RMS cut-off for duplicate conformers: 

0.2 

 Gradient cut-off for conformer 

minimization: 0.1 kcal/mol 

 Energy window: 3 kcal/mol. 

The alignment of a few compounds was 

manually adjusted by flipping the phenyl ring. 

This aligned the ortho substituents in a manner 

consistent with the whole dataset. 

 

Statistical analysis and results 

The regression method used in Forge is PLS6. 

Specifically, the SIMPLS algorithm7 was used. 

The initial training set of 73 compounds was 

partitioned into 80% training set (58 

compounds) and 20% test-set (15 compounds). 

The activity stratified method was used. 

The following conditions were used to calculate 

the field QSAR model: 

 Maximum 20 PLS components 

 Leave-many-out cross-validation (20% 

of training set, 1000 repeats) 

 50  Y scrambles 

 Sample point minimum distance 

threshold: 1 Å. 

Training set: 58 compounds 

pIC50 range: 5.8 - 9.7 

Test set (activity stratified): 15 

compounds 

pIC50 range: 6.1 - 9.4 

 

Optimal number of components: 3 

r2 = 0.870 

q2 = 0.798 

r2 test set = 0.623 

RMSE = 0.339 

RMSEpred = 0.422 

Figure 2. 3D-QSAR model statistics. 
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The results are shown in Figures 2 and 3. 

The 3-components model shows both good 

descriptive and predictive ability. This is shown 

by the good r2 and q2 values for the training and 

the cross-validated training set (Figure 2).  

The plot of experimental vs. predicted activity 

for the compounds, in the training set and the 

cross-validated training set (Figure 3, left), 

shows a good distribution of the values with 

only a few outliers. The plot of experimental vs. 

predicted activity for the compounds in the test 

set (Figure 3, right) is still reasonably good with 

only three outliers and a cross-validated r2 = 

0.623.  

Model visualization and 

interpretation 

A number of different views are available in 

Forge to help the visualization and 

interpretation of the 3D-QSAR model. 

The ‘model coefficient’ view shows the regions 

where the QSAR model suggests that the local 

fields have a strong effect on activity. Large 

points indicate that the model has found a 

strong correlation between the 

electrostatic/steric field in that position and 

higher activity values.  

Electrostatic and steric model coefficients for 

the three components DPP-4 3D-QSAR model 

are shown in Figure 4. This 3D-QSAR model is 

clearly dominated by the steric effects of 

substituents, as indicated by the large size of 

green and purple polyhedra. The electrostatic 

effects seem to play a minor role, as indicated 

by the very small size of red and cyan 

polyhedra. 

In Figure 4, the 3D-QSAR model coefficients are 

superposed to the structures of the two most 

potent (46b3 pIC50 9.74; 44b3 pIC50 9.51), and 

two less potent (295 pIC50 5.99, 365 pIC50 5.8) 

compounds in the training set. It can clearly be 

seen that substitution in position 8 of the 

Figure 3. Three components DPP-4 3D-QSAR model - experimental vs. predicted activity of the 

compounds in the training set (left) and the test set (right). 
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heteroaromatic ring (as in compound 46b and 

44b, top row) improves DPP-4 enzyme activity. 

Ortho substitution on the phenyl ring on the left 

is also beneficial, while an increase in steric bulk 

in the para position is detrimental to activity. 

Figure 5 shows the model field contributions to 

predicted activity. This view displays how well 

each particular molecule fits the model. The 

two most potent compounds in the top row 

(46b3, 44b3) have all the ‘good’ features 

(substitution in position 8, ortho substituent on 

the phenyl ring of the left, no bulky para 

substituent on the same ring), while the two 

less potent compounds on the bottom row (295, 

365) both miss the substituent in position 8 and 

36 has a bulky para-Cl substituent on the left 

phenyl ring.  

Conclusion 

Forge was used to build a statistically robust 3D-

QSAR model for a set of 73 DPP-4 enzyme 

inhibitors. Forge visualization capabilities made 

model visualization and interpretation 

straightforward.  

However, while powerful statistical techniques 

can give seemingly miraculous results, one 

needs to be constantly aware of the potential 

issues that can arise. These include over-

parameterized models, statistically 

questionable predictions, robustness to 

extrapolation rather than interpolation and 

many more. Further complications arise due to 

the complexities of conformational searching, 

molecular alignment, variations in binding 

modes across series, dealing with inconsistent 

biological data, etc. 

Figure 4. DPP-4 3D-QSAR electrostatic and steric model coefficients superposed to the two most 

potent (46b3, 44b3) and two less potent (295, 365) compounds in the training set. 
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Figure 5. DPP-4 3D QSAR field contributions to predicted activity for the two most potent (46b3, 

44b3) and two less potent (295, 365) compounds in the training set. 

http://www.cresset-group.com/
http://www.cresset-group.com/products/forge/

